Quantile and Decile rank of a column in pandas python is carried out using qcut() function with argument (labels=False) . Let’s see how to ·
- Get the Quantile rank of a column in pandas dataframe in python·
- Get the Decile rank of a column in pandas dataframe in python
With an example for each .First let’s create a dataframe
import pandas as pd import numpy as np #Create a DataFrame df1 = { 'Name':['George','Andrea','micheal','maggie','Ravi','Xien','Jalpa'], 'Mathematics_score':[62,47,55,74,32,77,86]} df1 = pd.DataFrame(df1,columns=['Name','Mathematics_score']) print(df1)
df1 will be
Quantile rank of a column in a pandas dataframe python
Quantile rank of the column (Mathematics_score) is computed using qcut() function and with argument (labels=False) and 4 , and stored in a new column namely “Quantile_rank” as shown below
df1['Quantile_rank']=pd.qcut(df1['Mathematics_score'],4,labels=False) print(df1)
so the resultant dataframe will have quantile rank ranging from 0 to 3
Decile rank of a column in a pandas dataframe python
Decile rank of the column (Mathematics_score) is computed using qcut() function and with argument (labels=False) and 10 , and stored in a new column namely “Decile_rank” as shown below
df1['Decile_rank']=pd.qcut(df1['Mathematics_score'],10,labels=False) print(df1)
so the resultant dataframe will have decile rank ranging from 0 to 9