Scaling and normalizing a column in Pandas python

Scaling and normalizing a column in pandas python is required,  to standardize the data, before we model a data. We will be using preprocessing method from scikitlearn package. Lets see an example which normalizes the column in pandas by scaling


Create a single column dataframe:

import pandas as pd
import numpy as np
from sklearn import preprocessing

# Create a DataFrame
d = {

df = pd.DataFrame(d,columns=['Score'])
print df

So the resultant dataframe will be


On plotting the score it will be


Step 1:  convert the column of a dataframe to float

# 1.convert the column value of the dataframe as floats

float_array = df['Score'].values.astype(float)


Step 2:  create a min max processing object. Pass the float column to the min_max_scaler() which scales the dataframe by processing it as shown below

# 2. create a min max processing object

min_max_scaler = preprocessing.MinMaxScaler()
scaled_array = min_max_scaler.fit_transform(float_array)



Step 3:  Convert the scaled array to the dataframe.

# 3. convert the scaled array to dataframe

df_normalized = pd.DataFrame(scaled_array)

so the final normalized dataframe will be


On plotting the scaled score the graph will be



previous-small Scaling and normalizing a column in Pandas dataframe python                                                                                                           next_small Scaling and normalizing a column in Pandas dataframe python


  • Sridhar Venkatachalam

    With close to 10 years on Experience in data science and machine learning Have extensively worked on programming languages like R, Python (Pandas), SAS, Pyspark.